Lecture 9: Turing Machines

Ryan Bernstein

1 Introductory Remarks

1.1 Exam Statistics

Before I hand back the exams, let’s talk about grades and statistics.

Way back at the beginning of the term, I told you that I had no intention of grading this class with the
traditional 90-80-70 grade boundaries. This is because I think that numeric feedback is a good way of
determining which things you need to work on. I'm also of the opinion that if you can perfectly recall
90-100% of the course material, you're either doing exceptionally well or you're not being taught as much
as you could or should be.

If you’re like me, this may not have been that reassuring. You're still seeing the numbers come in, and
you’ve got no idea where in that spectrum the lines are drawn. After the midterm and three assignments,
though, I feel like we have enough data to establish grading expectations. These are subject to change over
the course of the term, but hopefully they do give you an idea of how well you're doing in the class.

Grade | Overall Percentage
A 80%
B 70%
C 60%
D 50%

For current grades, this skews us toward the top of the spectrum, with eight As and eight Bs. And while
these cutoffs are, again, subject to change, the point here is this: the numbers may look harsh, but that’s
because the material is difficult and I don’t want to teach you less of it. I'm not going to give everybody
Cs.

As for the exam itself, we had:
e A high score of 95
e A mean of 66

e A median of 70



1.2 Assignment 2 Solutions
2 Turing Universal Machines

Assignment 1 contained a question in which we were wanted to prove that the regular languages were
closed under intersection. Assuming the existence of DFAs M4 = (Qa,%,04, @start,, Fa) and Mp =
(@B, 2,98, Gstart s, F'B), we had to create a “product” machine by taking the cross product of Q4 and Qp
and simulating the running of both machines in parallel.

One answer that I saw was simpler, and more closely mirrors the way that we as humans would test a
string s for membership in A N B given these same two machines: just run s through M4 and then run it
through Mp. If both machines accept, we know that s € AN B.

Unfortunately, this wasn’t possible. We're limited by a critical limitation in the development of finite (and
pushdown) automata: that we read input one character at a time, moving strictly from left to right. We
conceived of state machines as black boxes with a “tape head” that moved from the start of s to the end.
Running s through both machines in this way would require us to “reset” this tape head to the beginning
of the input.

This is the first new property of the next type of machine we’ll be looking at. At the “black box” level,
Turing machines look quite a bit like finite automata. They have a tape head that reads the input from
some infinitely-long tape.

HENEEEES

The Turing machine has two abilities that we haven’t seen before:

1. The tape head is able to move left or right across the tape
2. The tape head is able to write to the tape

Every Turing machine starts with the input string s written directly to the tape. Since this tape is infinitely
long, we say that every cell after the input is initially populated by a blank character .. Similar to the
pushdown automaton, we have an opportunity to both read and write a character from the current cell at
every state transition. We also choose whether to move the tape head left or right.

The requirement that the tape head move strictly from left to right gave us a way to tell when our automata
were finished processing the input string. Now that we have the ability to backtrack, it’s much less clear
when to declare ourselves “done” and check to see if we're in an accepting or rejecting state.

To address this, a Turing machine has exactly one accept state guccepr and exactly one reject state greject-
Until we enter one of these two states, we assume that the string is still being processed. Accordingly,
entering either of these states will immediately terminate computation. If the machine terminated its
computation by entering gccept, We say that it accepted the string; if it ends by entering greject, we
immediately say that it rejected the string.



2.1 Formal Description of a Turing Machine

A Turing machine is a 7-tuple (Q, X, T, 9, start, Qaccepts Greject), Where:
e () is a set of states
e 3 is the input alphabet

e [ is the tape alphabet, which includes any characters that may be written to the tape. Since we
write directly to the input tape, ¥ C T’

e ) is a transition function responsible for describing:
1. What state we are currently in
2. What character we read off of the tape next
3. The state to which we transition
4. What character we write to our current cell in the tape
5. Whether we move left or right
Therefore, § : Q@ x I' = Q x I' x {L, R}
® (start 1S the start state
® Gaccept 18 the sole accept state

® Greject 1S the sole reject state

2.2 Drawing Turing Machines

Like pushdown automata, state diagrams of Turing machines look a lot like a DFA or NFA, but have
different labels on the transitions to represent the different form of the § function. We said that ¢ :
Q xT. — Q xT x{L,R}. Since this is a state diagram, both elements of @ are represented by the
state from which the transition originates and the state in which it ends. We label the transition arrow
with:

1. The character read from the tape

2. A right-arrow

3. The character written to the current cell in the tape

4. The direction in which the tape head will move (from {L, R})

A transition label therefore looks something like 0 — z, L.

Example Draw a Turing machine that decides the language L = {w#w | w € {0,1}*}.

Our strategy for this machine is pretty simple. Since we can write to the tape, we’ll replace each character
that we see on the left side of the # with an x, then scan to the right and make sure that the first character



on the right side of the # matches it. We’'ll then replace that character with an x as well. For the string
01#01, our tape would then go through the following states:

01401 Mark the first 0
x1#01 Mark the first non-x character on the right
xl#xl Look for the first unmarked character on the left
rr#rl Mark the first unmarked character on the right
rTHrx ACCEPT

As an aside, this idea of “marking” states will be something we use a lot when constructing Turing machines.
Now that we have the ability to write arbitrarily to the tape, we can easily keep track of things that we’ve
already seen by expanding I'. If we’re moving the tape head between sections, we’ll often need some way
of remembering the cell from which we started. If we don’t need to retain the value of that character, as

we don’t here, we can simply replace it with an x or similar. If we do, we can just double I', replacing ones
with 1s and zeros with Os.

0,1+ R 0,1 - R
#—R #— R
r— R r— R

0,1,z — L

# — L

qr 0,1—- L
r— R

We've omitted explicit transitions to greject just to simplify the picture.

I told you before that because of how quickly they grew in complexity, I wouldn’t require you to draw a
pushdown automaton on your homework or on an exam. Since Turing machines get even more complex,
I’'m never going to ask you to draw one of these, either. In fact, I intend to forget everything I just showed

you as soon as I walk out the door today, so if you draw a Turing machine on your homework, I probably
won’t even know how to grade it.



2.3 Informal Construction of Turing Machines

Unlike regular and context-free languages, we won’t be looking at any syntax (such as a regular expression
or a context-free grammar) for describing Turing-decidable languages. To show that a language is decid-
able, we must construct a Turing machine for it, but we want to avoid drawing them whenever possible.
Instead, we’ll create Turing machines using informal descriptions of their behavior. As long as each step
is algorithmically possible, the machine we describe should be possible as well.

Example 2 Provide an informal description of the Turing machine that decides {w#w | w € {0,1}*}
M = “On input w:
1. If the string is not of the form (0U1)*o# 0 (0U1)*, REJECT
2. While unmarked characters remain to the left of the #:
(a) Mark the first unmarked character on the left side of the #

(b) If the character marked was a zero, ensure that the first unmarked character on the right of the
# is a zero. Mark this character.

(c) If the character marked was a one, ensure that the first unmarked character on the right of the
# is a one. Mark this character

3. If unmarked characters remain on the right side of the #, REJECT
4. ACCEPIT”

As you can see, descriptions of these machines are a lot less formal than anything we’ve dealt with so far.
Step 1 seems particularly powerful. How can we ensure that a string matches (0U1)*o# 0 (0U1)* without
describing the movement of the tape head?

The answer lies in the fact that this is a regular expression, which means it represents a regular language.
We can decide regular languages with a DFA that never modifies its input. This means that we can begin
our Turing machine with a series of states that simulates that DFA. A “verification” scan of a string to
see if it matches a regular expression is therefore always allowable.

Example 3 Provide an informal description of a Turing machine that decides {12 | n > 0}.

This machine is based on the idea that if we repeatedly divide a power of two in half will, we will see an
even number each time until we eventually reach the value 1.

M = “On input w:
1. If w is not of the form 0*, REJECT

2. Sweep across the input from left to right, replacing off every other 1 with an z. If we traverse across
an odd number of ones:

e If this number was one, ACCEPT
e REJECT
3. Return to the left end of the input tape



4. Go to step 17

Worksheet Exercise Provide an informal description of a Turing machine that decides {0"1"2" | n >

0}.

3 Decidability vs. Recognizability

Way back in Lecture 1, I mentioned that eventually, there would be a difference between the terms “decide”
and “recognize”. Until now, these concepts have been interchangeable. All of our models of computation
operate on a string and definitively answer the question of whether or not it’s an element of some language.
Finite and pushdown automata accept or reject a string. A regular expression is or is not capable of
matching a string. And a context-free grammar is or is not capable of generating a string.

Here, though, things become a bit more ambiguous. A Turing machine has a single accept state guccept,
which is something we’ve seen before in GNFAs. But it also has only one rejecting state, ¢rcject. When a
Turing machine is given some string as input, it may accept it or reject it. But there’s a third option as
well: it may never enter either of these states at all.

We say that a Turing machine decides a language L if it accepts or rejects any arbitrary string s based
on its membership in L. We say that a Turing machine recognizes a language L if it accepts every string
in the language. If a decider exists for some language, we say that the language is Turing-decidable; if a
recognizer exists for it, we say that the language is Turing-recognizable.

What’s the difference here? If a recognizer for L will accept every string in L, can’t we just assume that
any string that it doesn’t accept is not a member of L? This is where runtime comes into play. Since we
no longer require the processing of our string to go strictly from start to end, we have no clear way of
determining when the machine has “finished”. If we see that the machine is not in guecept O greject, does
this mean that s is not a member of L7 Or does the machine simply need more time to process?

We can think of a Turing machine as a predicate function that takes a string s and returns a Boolean that
indicates whether or not s is in L. Entering gaccept OT @reject means that our function has returned true or
false. Unless it does this, we don’t know whether the function is still processing or if it is stuck in some
infinite loop.

We'll be discussing more about what makes languages decidable or recognizable next week.

3.1 Turing Machines as Algorithms

You may have heard programming languages described as Turing-complete or Turing-equivalent. We've
now seen enough to know what this means: a language is Turing equivalent if it can be used to simulate
any arbitrary Turing machine. Why is this important?

The Church-Turing Thesis states that any computable function can be computed using a Turing machine
like the ones we’ve been discussing. Turing-equivalence therefore means that a language is equivalent in
power not only to a Turing machine itself, but also to every other Turing-equivalent language.

What does this mean for our Turing machines themselves? Since these are capable of computing anything
that can be computed, what we’re doing here is actually creating algorithms, albeit in a very restrictive



format. This also means that proof of Turing-decidability — which we’re doing every time we create a
Turing machine for some language — is also proof of computability in general.



